Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi I, J lần lượt là trung

Câu hỏi số 212370:
Thông hiểu

Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi I, J lần lượt là trung điểm của các cạnh AD và BC và G là trọng tâm tam giác SAB. Tìm giao tuyến của hai mặt phẳng (SAB) và (IJG)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:212370
Phương pháp giải

- Sử dụng tính chất: Nếu hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) có điểm chung M và lần lượt chứa hai đường thẳng song song d và d’ thì giao tuyến của \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) là đường thẳng đi qua M và song song với d và d’.

Giải chi tiết

Ta có: ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD.

\( \Rightarrow \) IJ // AB // CD.

\(\left\{ \matrix{  G \in \left( {SAB} \right) \cap \left( {{\rm{IJ}}G} \right) \hfill \cr   AB \subset \left( {SAB} \right) \hfill \cr   {\rm{IJ}} \subset \left( {{\rm{IJ}}G} \right) \hfill \cr   AB//{\rm{IJ}} \hfill \cr}  \right. \Rightarrow \) Trong (SAB) qua G kẻ MN // AB \(\left( {M \in SA;N \in SB} \right)\).

\( \Rightarrow \left( {SAB} \right) \cap \left( {{\rm{IJ}}G} \right) = MN\) và MN // IJ // AB // CD.

Chọn D.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com