Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = mx - \sin x\) đồng biến trên \(\mathbb{R}.\)
Câu 212762: Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = mx - \sin x\) đồng biến trên \(\mathbb{R}.\)
A. \(m > 1.\)
B. \(m \le - 1.\)
C. \(m \ge 1.\)
D. \(m \ge - 1.\)
Phương pháp giải. Sử dụng kết quả: hàm số \(y = f\left( x \right)\) đồng biến trên tập \(D\) nào đó khi và chỉ khi đạo hàm của hàm số trên tập \(D\) không âm, tức là \(f'\left( x \right) \ge 0,\,\,\forall x \in D.\)
Áp dụng vào bài tập này ta đi tính đạo hàm \(y'.\) Sau đó cho \(y'\ge 0,\,\,\forall x\in \mathbb{R}\) để tìm giá trị của \(m\)
-
Đáp án : C(11) bình luận (0) lời giải
Giải chi tiết:
Lời giải chi tiết.
Để hàm số đã cho đồng biến trên \(\mathbb{R}\) thì điều kiện cần và đủ là \(y'\ge 0\Leftrightarrow \left( mx-\sin x \right)'\ge 0\Leftrightarrow m-\cos x\ge 0\Leftrightarrow m\ge \cos x\,,\forall x\in \mathbb{R}.\)
Do \(-1\le \cos x\le 1,\forall x\in \mathbb{R},\) nên ta có \(m\ge \cos x,\,\forall x\in \mathbb{R}\Leftrightarrow m\ge 1.\)
Chọn đáp án C.
Lời giải sai Bình thường Khá hay Rất Hay
Hỗ trợ - Hướng dẫn

-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com