Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phát biểu nào trong các phát biểu sau là đúng?

Câu hỏi số 213304:
Nhận biết

Phát biểu nào trong các phát biểu sau là đúng?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:213304
Phương pháp giải

Phương pháp:

Định nghĩa đạo hàm: Nếu hàm số \(f\left( x \right)\) xác định tại \({x_0}\) và tồn tại giới hạn \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì hàm số \(f\left( x \right)\) có đạo hàm tại \({x_0}\).

Định nghĩa hàm số liên tục tại một điểm: Nếu hàm số \(f\left( x \right)\) xác định tại \({x_0}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) thì hàm số liên tục tại \({x_0}\).

Giải chi tiết

Cách giải:

Dựa vào định nghĩa đạo hàm, ta có kết quả:

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì tồn tại giới hạn \(L = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).

Do đó \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) vì nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \ne f\left( {{x_0}} \right)\) thì \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} =  \pm \infty \)

Do đó hàm số liên tục tại điểm \(x = {x_0}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com