Tìm tất cả các giá trị của \(m\) để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt
Tìm tất cả các giá trị của \(m\) để hàm số
\(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {1 - x} - \sqrt {1 + x} }}{x}{\text{ khi }}x < 0\\m + \dfrac{{1 - x}}{{1 + x}}{\text{ khi }}x \ge 0\end{array} \right.\)
liên tục tại \(x = 0\).
Đáp án đúng là: B
Quảng cáo
Phương pháp: Tìm điều kiện để hàm số
\(f(x) = \left\{ \begin{array}{l}g\left( x \right){\rm{ }}\,\,\,\,{\text{ khi }}x \ne a\\b\,\,\,{\rm{ }}\,\,{\text{ khi }}x = a\end{array} \right.\)
liên tục tại điểm \(x = a\)
+ Tìm \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = \mathop {\lim }\limits_{x \to a} g\left( x \right) = L\)
+ Tìm điều kiện cần và đủ để \(L = f\left( a \right) = b\), từ đó suy ra điều kiện cần tìm
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












