Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Có bao nhiêu số phức z  thỏa mãn \(|z+2-i|=2\sqrt{2}\)  và \({{(z-1)}^{2}}\)  là số thuần

Câu hỏi số 213831:
Vận dụng

 Có bao nhiêu số phức z  thỏa mãn \(|z+2-i|=2\sqrt{2}\)  và \({{(z-1)}^{2}}\)  là số thuần ảo?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:213831
Phương pháp giải

Gọi số phức cần tìm là \(z=a+bi\left( a,b\in R \right)\), thay vào các hệ thức trong bài và tìm \(a,b\Rightarrow z\).

Số phức \(z=a+bi\) là số thuần ảo nếu \(a=0\).

Giải chi tiết

Giả sử \(z=a+bi\), ta có \({{(z-1)}^{2}}={{(a+bi-1)}^{2}}={{(a-1)}^{2}}-{{b}^{2}}+2(a-1)bi\).

Từ giả thiết \({{(z-1)}^{2}}\)  là số thuần ảo suy ra \({(a - 1)^2} - {b^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{b = a - 1}\\{b = 1 - a}\end{array}} \right.\).  (1)

Từ giả thiết  \(|z+2-i|=2\sqrt{2}\)  ta có

\(|a + bi + 2 - i| = 2\sqrt 2  \Leftrightarrow {(a + 2)^2} + {(b - 1)^2} = 8\) (2)

Nếu \(b=a-1\), thay vào (2) có  \({{(a+2)}^{2}}+{{(a-2)}^{2}}=8\Leftrightarrow 2{{a}^{2}}+8=8\Leftrightarrow a=0\Rightarrow b=-1\)

Nếu \(b=1-a\), thay vào (2) có \({{(a+2)}^{2}}+{{(-a)}^{2}}=8\Leftrightarrow 2{{a}^{2}}+4a-4=0\)  (*). Phương trình có \(\Delta '>0\)  nên tìm được 2 số phức thỏa mãn.

Mặt khác \(a=0\)  không là nghiệm của phương trình (*) nên tìm được 3  số phức.

Chú ý khi giải

Sai lầm thường gặp:

- Xác định sai điều kiện để một số phức là thuần ảo.

- Giải sai hệ phương trình tìm \(a,b\).

 

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com