Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có \(A(2; - 1;1)\), \(B(3;0; - 1)\),
Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có \(A(2; - 1;1)\), \(B(3;0; - 1)\), \(C(2; - 1;3)\) và \(D\) thuộc trục \(Oy\) . Tính tổng tung độ của các điểm \(D\), biết thể tích tứ diện bằng \(5\) .
Đáp án đúng là: A
Quảng cáo
Phương pháp:
- Sử dụng công thức tính tọa độ vecto:
Cho hai điểm \(A({a_1};{a_2};{a_3})\) và \(B({b_1};{b_2};{b_3})\) ta có: \(\overrightarrow {AB} = ({b_1} - {a_1};{b_2} - {a_2};{b_3} - {a_3})\)
- Sử dụng công thức tính vô hướng
Cho hai vecto \(\overrightarrow {AB} = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD} = ({b_1};{b_2};{b_3})\) ta có: \(\overrightarrow {AB} .\overrightarrow {CD} = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
- Sử dụng công thức tính tích có hướng:
Cho hai vecto \(\overrightarrow {AB} = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD} = ({b_1};{b_2};{b_3})\) ta có:\(\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right)\)
- Sử dụng công thức tính thể tích tứ diện \({V_{ABCD}} = \dfrac{1}{6}.\left| {\left[ {\overrightarrow {AB} {\rm{,}}\overrightarrow {AC} } \right]{\rm{.}}\overrightarrow {AD} } \right|\)
Sai lầm thường gặp:
- Tính sai tọa độ các véc tơ.
- Nhầm lẫn các công thức tính tích có hướng và vô hướng.- Nhớ sai công thức tính thể tích tứ diện.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












