Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, d là giao tuyến của hai
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, d là giao tuyến của hai mặt phẳng (DMN) và (DBC). Xét vị trí tương đối của d và mp(ABC) là:
Đáp án đúng là: D
Quảng cáo
MN là đường trung bình của tam giác ABC nên MN // BC.
(DMN) và (DBC) có điểm D chung, hơn nữa \(MN\subset \left( DMN \right),BC\subset \left( DBC \right),MN\parallel BC\Rightarrow \) Giao tuyến của (DMN) và /(DBC) là đường thẳng d đi qua D và d // MN // BC.
Ta có: \(BC\subset \left( ABC \right)\Rightarrow d\parallel \left( ABC \right).\)
Chọn D.
Đáp án cần chọn là: D
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













