Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai tam giác ABC và A’B’C’ lần lượt có trọng tâm G và G’. Đẳng thức nào dưới đây là

Câu hỏi số 216411:
Thông hiểu

Cho hai tam giác ABC và A’B’C’ lần lượt có trọng tâm G và G’. Đẳng thức nào dưới đây là sai?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:216411
Phương pháp giải

Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 .\)

Giải chi tiết

Vì G và G’ lần lượt là trọng tâm của tam giác ABC và A’B’C’ nên ta có:

\(\eqalign{  & \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0   \cr   & \overrightarrow {G'A'}  + \overrightarrow {G'B'}  + \overrightarrow {G'C'}  = \overrightarrow 0 . \cr} \)

Với điểm M bất kì khác điểm G ta chứng minh: \(3\overrightarrow {MG}  = \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} \)

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = \overrightarrow {MG}  + \overrightarrow {GA}  + \overrightarrow {MG}  + \overrightarrow {GB}  + \overrightarrow {MG}  + \overrightarrow {GC}  = 3\overrightarrow {MG} \)

Tương tự ta có: \(3\overrightarrow {MG'}  = \overrightarrow {MA'}  + \overrightarrow {MB'}  + \overrightarrow {MC'} \)

Từ đó suy ra

\(\eqalign{  & 3\overrightarrow {GG'}  = 3\left( {\overrightarrow {MG'}  - \overrightarrow {MG} } \right) = 3\overrightarrow {MG'}  - 3\overrightarrow {GM}   \cr   &  = \overrightarrow {MA'}  + \overrightarrow {MB'}  + \overrightarrow {MC'}  - \overrightarrow {MA}  - \overrightarrow {MB}  - \overrightarrow {MC}   \cr   &  = \left( {\overrightarrow {MA'}  - \overrightarrow {MA} } \right) + \left( {\overrightarrow {MB'}  - \overrightarrow {MB} } \right) + \left( {\overrightarrow {MC'}  - \overrightarrow {MC} } \right)  \cr   &  = \overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'} . \cr} \)

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com