Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình vuông ABCD cạnh a, tâm O. Gọi M là điểm tùy ý trên đường tròn nội tiếp hình vuông.

Câu hỏi số 216426:
Vận dụng

Cho hình vuông ABCD cạnh a, tâm O. Gọi M là điểm tùy ý trên đường tròn nội tiếp hình vuông. Tính \(\overrightarrow {MA} .\overrightarrow {MB}  + \overrightarrow {MC} .\overrightarrow {MD} \).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:216426
Phương pháp giải

Đưa biểu thức cần tính về các tích vô hướng đặc biệt của hình vuông

Giải chi tiết

Ta có

\(\eqalign{  & \overrightarrow {MA} .\overrightarrow {MB}  + \overrightarrow {MC} .\overrightarrow {MD}  = \left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OC} } \right)\left( {\overrightarrow {MO}  + \overrightarrow {OD} } \right)  \cr   & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2M{O^2} + \overrightarrow {OA} .\overrightarrow {OB}  + \overrightarrow {OC.} \overrightarrow {OD}  + \overrightarrow {MO} \left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right). \cr} \)

Có \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \)

\(\overrightarrow {OA}  \bot \overrightarrow {OB}  \Rightarrow \overrightarrow {OA} .\overrightarrow {OB}  = 0,\overrightarrow {OC}  \bot \overrightarrow {OD}  \Rightarrow \overrightarrow {OC} .\overrightarrow {OD}  = 0\)

Đường tròn nội tiếp hình vuông cạnh a có bán kính \({a \over 2} \Rightarrow MO = {a \over 2} \Rightarrow M{O^2} = {{{a^2}} \over 4}.\)

Vậy \(\overrightarrow {MA} .\overrightarrow {MB}  + \overrightarrow {MC} .\overrightarrow {MD}  = 2.{{{a^2}} \over 4} = {{{a^2}} \over 2}\)

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com