Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác ABC biết \(AB = 5cm,BC = 7cm,CA = 8cm\). Khi đó \(\overrightarrow {AB} .\overrightarrow {AC}

Câu hỏi số 217393:
Thông hiểu

Cho tam giác ABC biết \(AB = 5cm,BC = 7cm,CA = 8cm\). Khi đó \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng 

Đáp án đúng là: D

Quảng cáo

Câu hỏi:217393
Phương pháp giải

Công thức tính cosin của góc giữa hai vectơ \(\overrightarrow a \) vả \(\overrightarrow b \) lạ: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\)

Giải chi tiết

Áp dụng định lí cosin trong tam giác ABC ta có: \(\cos \widehat {BAC} = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} = \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.\)

\(\begin{array}{l}\left| {\cos \left( {\overrightarrow {AB} ;\overrightarrow {AC} } \right)} \right| = \cos \widehat {BAC} = \frac{1}{2}\\ \Leftrightarrow \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC} } \right|}}{{AB.AC}} = \frac{1}{2} \Leftrightarrow \left| {\overrightarrow {AB} .\overrightarrow {AC} } \right| = 5.8.\frac{1}{2} = 20.\end{array}\)

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com