Cho hình bình hành ABCD có AB = a, BC = b (a>b). Các phân giác trong của các góc A, B, C, D tạo thành
Cho hình bình hành ABCD có AB = a, BC = b (a>b). Các phân giác trong của các góc A, B, C, D tạo thành tứ giác MNPQ.
Chứng minh MNPQ là hình chữ nhật. Chứng minh các đường chéo của hình chữ nhật MNPQ song song với các cạnh của hình bình hành ABCD. Tính độ dài đường chéo hình chữ nhật MNPQ theo a, b.
Quảng cáo
a) Ta chứng minh QPNM là hình chữ nhật dựa vào dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật.
b) Để chứng minh QN//AB//CD ta chứng minh DQNF là hình bình hành dựa vào dấu hiệu tứ giác có cặp cạnh đối sonh song và bằng nhau là hình bình hành, lập luận để suy ra QN // AB // CD, từ đó suy ra điều phải chứng minh.
+ Tính độ dài đường chéo hình chữ nhật thông qua cạnh DF của hình bình hành DQNF (do QN = DF).
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











