Cho hình thang cân ABCD, đáy nhỏ AB = 6, CD = 18, AD = 10. Gọi I, K, M, L lần lượt là trung điểm
Cho hình thang cân ABCD, đáy nhỏ AB = 6, CD = 18, AD = 10. Gọi I, K, M, L lần lượt là trung điểm của các đoạn BC, CA, AD và BD.
Chứng minh M, L, K, I thẳng hàng và ABKL là hình chữ nhật. Tính độ dài các cạnh và đường chéo của hình chữ nhật ABKL.
Quảng cáo
a) Để chứng minh M, L, I, K thẳng hàng ta lần lượt chứng minh ML, IK thuộc đường trung bình MI của hình thang ABCD.
+ Để chứng minh ABKL là hình chữ nhật ta chứng minh ABKL là hình bình hành dựa vào dấu hiệu tứ giác có một cặp cạnh đối song song và bằng nhau. Sau đó chỉ ra hai đường chéo hình bình hành bằng nhau để chứng minh ABKL là hình chữ nhật.
b) + Đầu tiên ta áp dụng định lý pitago cho tam giác vuông AML để tìm AL
+ Áp dụng định lý pitago cho tam giác vuông AKL để tìm AK.
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










