Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác ABC vuông tại A có AB = 5cm, BC = 13cm. Gọi góc \(\widehat {ABC} = \alpha \) và\(\widehat {ACB} =

Câu hỏi số 217983:
Vận dụng cao

Cho tam giác ABC vuông tại A có AB = 5cm, BC = 13cm. Gọi góc \(\widehat {ABC} = \alpha \) và\(\widehat {ACB} = \beta \). Hãy chọn kết luận đúng khi so sánh \(\alpha \) và \(\beta \).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:217983
Phương pháp giải

+ Sử dụng định lý Pitago \(B{C^2} = A{B^2} + A{C^2}\) để tính AC.

+ Sử dụng công thức định lí sin là:\({b \over {\sin B}} = {c \over {\sin C}}\)

+ Sử dụng nhận xét khi \(x \in (0,{90^0 }\)  thì hàm \(y = \sin x\) đồng biến và \(\sin x > 0\).

Giải chi tiết

+ Có \(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{{13}^2} - {5^2}}  = 12\).

+ \({b \over {\sin B}} = {c \over {\sin C}} \Rightarrow {{\sin C} \over {\sin B}} = {c \over b} = {5 \over {12}} < 1\)   (*)

+ Tam giác ABC vuông tại A, suy ra B và C là góc nhọn. Do đó \(\sin B > 0\) và \(\sin C > 0\). Từ (*) suy ra \(\sin C < \sin B\) . Suy ra C < B hay \(\beta  < \alpha \).

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com