Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Tìm tất cả các giá trị của m để hàm số \(y=-{{x}^{4}}+2m{{\text{x}}^{2}}-1\)có ba cực

Câu hỏi số 217991:
Thông hiểu

 Tìm tất cả các giá trị của m để hàm số \(y=-{{x}^{4}}+2m{{\text{x}}^{2}}-1\)có ba cực trị?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:217991
Phương pháp giải

Sử dụng điều kiện cần và đủ để hàm số đạt cực trị tại một điểm để giải bài toán.

Giải chi tiết

Ta có \(y'=-4x\left( {{x}^{2}}-m \right).\) Do đó để đồ thị hàm số có ba cực trị thì điều kiện cần là \(y'=0\) có ba nghiệm phân biệt, tức phương trình \(-4x\left( {{x}^{2}}-m \right)=0\) có ba nghiệm phân biệt. Khi đó đòi hỏi \(m>0.\) Với \(m>0\) thì phương trình có ba nghiệm \(x=0,x=-\sqrt{m},x=\sqrt{m}.\) Ta có \(y''=-12{{x}^{2}}+4m.\) Kéo theo\(y''\left( 0 \right)=4m>0,\,y''\left( -\sqrt{m} \right)=-12m+4m=-8m<0,\,\,y''\left( \sqrt{m} \right)=-8m<0.\) Suy ra \(x=0,\,x=\pm \sqrt{m}\) tương ứng là các điểm làm cho hàm số đạt cực tiểu và cực đại.        

Chọn đáp án A.

 

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com