Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), tam giác ABC đều cạnh a và tam giác SAB cân.

Câu hỏi số 219266:
Thông hiểu

Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), tam giác ABC đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:219266
Phương pháp giải

Bước 1: Tìm mặt phẳng (P) chứa A vuông góc với mặt phẳng (SBC)

Bước 2: Tìm giao tuyến của 2 mặt phẳng (P) và (SBC)

Bước 3: Từ A kẻ đường thẳng vuông góc với giao tuyến thì đó chính là khoảng cách từ A đến (SBC)

Giải chi tiết

Gọi M là trung điểm của BC.Do tam giác ABC đều nên ta có \(AM \bot BC\)

Lại có \(SA \bot \left( {ABC} \right) \Rightarrow BC \bot SA\)

Nên \(BC \bot \left( {SAM} \right)\)

Có \(\left( {SAM} \right) \cap \left( {SBC} \right) = SM\)

Từ A kẻ AD vuông góc với SM khi đó ta có

\(AD = d\left( {A;\left( {SBC} \right)} \right)\)

Tam giác SAB vuông cân tại A nên SA = a.

Trong tam giác vuông SAM ta có:

\(\eqalign{& {1 \over {A{D^2}}} = {1 \over {S{A^2}}} + {1 \over {A{M^2}}}  \cr &  = {1 \over {{a^2}}} + {1 \over {{{\left( {{{a\sqrt 3 } \over 2}} \right)}^2}}} = {1 \over {{a^2}}} + {4 \over {3{a^2}}} = {7 \over {3{a^2}}}  \cr &  \Rightarrow AD = {{a\sqrt 3 } \over {\sqrt 7 }} \cr}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com