Tính \(\int {{{{x^2} - 1} \over {{{\left( {{x^2} + 1} \right)}^2}}}dx} \)?
Tính \(\int {{{{x^2} - 1} \over {{{\left( {{x^2} + 1} \right)}^2}}}dx} \)?
Đáp án đúng là: C
Quảng cáo
Nhận xét \({{{x^2} - 1} \over {{{\left( {{x^2} + 1} \right)}^2}}} = {{2{x^2}} \over {{{\left( {{x^2} + 1} \right)}^2}}} - {1 \over {{x^2} + 1}} \Rightarrow \int {{{{x^2} - 1} \over {{{\left( {{x^2} + 1} \right)}^2}}}dx} = \int {{{2{x^2}} \over {{{\left( {{x^2} + 1} \right)}^2}}}dx} - \int {{1 \over {{x^2} + 1}}dx} .\)
Sử dụng phương pháp tích phần từng phần để tính tích phân thứ nhất, đặt \(\left\{ \matrix{ u = x \hfill \cr dv = {{d\left( {{x^2} + 1} \right)} \over {{{\left( {{x^2} + 1} \right)}^2}}} \hfill \cr} \right.\)
Ta không thể chia cả tử và mẫu cho \({x^2}\) do x = 0 vẫn thuộc vào tập xác định của hàm số.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












