Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Với mọi \(n \in N*\) giá trị của tổng \({S_n} = {1^2} + {3^2} + ... + {\left( {2n - 1} \right)^2}\)

Câu hỏi số 219337:
Thông hiểu

Với mọi \(n \in N*\) giá trị của tổng \({S_n} = {1^2} + {3^2} + ... + {\left( {2n - 1} \right)^2}\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:219337
Phương pháp giải

Thử một giá trị bất kì của n thỏa mãn \(n \in N*\) và dự đoán kết quả.

Chứng minh kết quả vừa dự đoán là đúng bằng phương pháp quy nạp toán học.

Giải chi tiết

Với n = 1 ta có: \({S_1} = 1\), loại đáp án A và B.

Ta chứng minh đáp án C đúng với mọi \(n \in N*\) bằng phương pháp quy nạp toán học.

Giả sử \({S_n} = {1^2} + {3^2} + ... + {\left( {2n - 1} \right)^2} = {{n\left( {4{n^2} - 1} \right)} \over 3}\,\,\left( * \right)\) đúng đến n = k, tức là \({S_k} = {1^2} + {3^2} + ... + {\left( {2k - 1} \right)^2} = {{k\left( {4{k^2} - 1} \right)} \over 3}\), ta chứng minh (*) đúng đến n = k + 1, tức là cần chứng minh:

\({S_{k + 1}} = {1^2} + {3^2} + ... + {\left( {2\left( {k + 1} \right) - 1} \right)^2} = {{\left( {k + 1} \right)\left[ {4{{\left( {k + 1} \right)}^2} - 1} \right]} \over 3}\)

Ta có:

\(\eqalign{  & {S_{k + 1}} = {1^2} + {3^2} + ... + {\left( {2\left( {k + 1} \right) - 1} \right)^2} = {1^2} + {3^2} + ... + {\left( {2k + 1} \right)^2} = {1^2} + {3^2} + ... + {\left( {2k - 1} \right)^2} + {\left( {2k + 1} \right)^2}  \cr   &  = {{k\left( {4{k^2} - 1} \right)} \over 3} + {\left( {2k + 1} \right)^2} = {{k\left( {2k + 1} \right)\left( {2k - 1} \right) + 3{{\left( {2k + 1} \right)}^2}} \over 3} = {{\left( {2k + 1} \right)\left( {2{k^2} - k + 6k + 3} \right)} \over 3}  \cr   &  = {{\left( {2k + 1} \right)\left( {k + 1} \right)\left( {2k + 3} \right)} \over 3} = {{\left( {k + 1} \right)\left( {4{k^2} + 8k + 3} \right)} \over 3} = {{\left( {k + 1} \right)\left[ {4{{\left( {k + 1} \right)}^2} - 1} \right]} \over 3}. \cr} \)

Vậy đẳng thức (*) đúng với mọi \(n \in N*\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com