Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tam giác đều \(ABC\) có cạnh bằng \(1,\) nội tiếp trong đường tròn tâm \(O.\) Đường cao

Câu hỏi số 219765:
Thông hiểu

Cho tam giác đều \(ABC\) có cạnh bằng \(1,\) nội tiếp trong đường tròn tâm \(O.\) Đường cao \(AD\) của tam giác \(ABC\) cắt đường tròn tại điểm \(H.\) Khi đó \(BOCH\) là hình:

Đáp án đúng là: B

Câu hỏi:219765
Phương pháp giải

Chứng minh tứ giác \(OBHC\) có 4 cạnh bằng nhau suy ra là hình thoi.

Giải chi tiết

Ta có: \(AD\) là đường cao của \(\Delta ABC\) đều nên nó cũng là trung tuyến \( \Rightarrow BD = DC.\)

Xét \(\Delta DBH,\,\Delta DCH\) có

\(\begin{array}{l}BD = DC,\,\\\widehat {BDH} = \widehat {CDH} = {90^0}\\DH\,\,chung\end{array}\)

\( \Rightarrow \Delta DBH = \,\Delta DCH\,\,\left( {c.g.c} \right) \Rightarrow BH = HC\,\,\left( 1 \right).\)

Do \(AH\) là đường kính nên \(\widehat {ACH} = {90^0}\).

Mà \(\widehat {ACD} = {60^0} \Rightarrow \widehat {DCH} = {30^0}\)

Do \(OA = OC = R\) nên \(\widehat {OAC} = \widehat {OCA} = {30^0}\) suy ra \(\widehat {OCD} = {30^0}\)

Xét hai tam giác vuông \(\Delta ODC,\Delta HDC\) có \(\widehat {ODC} = \widehat {HDC} = {90^0};\widehat {OCD} = \widehat {HCD} = {30^0};CD\) chung nên \(\Delta ODC = \Delta HDC\left( {g.c.g} \right) \Rightarrow OC = CH\).

Tứ giác \(OBHC\) có 4 cạnh bằng nhau nên là hình thoi.      

Chọn đáp án B.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com