Cho dãy số (un) với \({u_n} = \frac{{{{( - 1)}^{n + 1}}}}{{n + 1}}\) (với \(n \in N*\)) . Khẳng
Cho dãy số (un) với \({u_n} = \frac{{{{( - 1)}^{n + 1}}}}{{n + 1}}\) (với \(n \in N*\)) . Khẳng định nào sau đây sai?
Đáp án đúng là: B
Quảng cáo
\({u_n}\) là số hạng thứ n.
Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên bởi M khi và chỉ khi \({u_n} < M\,\,\forall n \in N*\).
Dãy số tăng là dãy số có \({u_{n + 1}} > {u_n}\,\,\forall n \in N*\), dãy số giảm là dãy số có \({u_{n + 1}} < {u_n}\,\,\forall n \in N*\)
Đáp án cần chọn là: B
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












