Cho cấp số cộng \(\left( {{u_n}} \right)\) có công sai d = 2 và \(u_2^2 + u_3^2 + u_4^2\) đạt giá
Cho cấp số cộng \(\left( {{u_n}} \right)\) có công sai d = 2 và \(u_2^2 + u_3^2 + u_4^2\) đạt giá trị nhỏ nhất. Số 2018 là số hạng thứ bao nhiêu của cấp số cộng \(\left( {{u_n}} \right)\)
Đáp án đúng là: A
Quảng cáo
Sử dụng công thức số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d\), tìm giá trị nhỏ nhất của biểu thức \(u_2^2 + u_3^2 + u_4^2\)Tìm số hạng tổng quát của cấp số cộng.Cho \({u_n} = 2018\) và tìm n.
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












