Hình chóp S.ABCD đáy hình vuông cạnh a; \(SA \bot (ABCD)\); \(SA = a\sqrt 3 \). Khoảng cách từ B đến
Hình chóp S.ABCD đáy hình vuông cạnh a; \(SA \bot (ABCD)\); \(SA = a\sqrt 3 \). Khoảng cách từ B đến mặt phẳng (SCD) bằng:
Đáp án đúng là: B
Quảng cáo
- Chứng minh \(d\left( {B,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right)\) bằng cách sử dụng định lý: “Đường thẳng song song với mặt phẳng thì khoảng cách từ mọi điểm thuộc đường thẳng đến mặt phẳng là bằng nhau”.
- Gọi \(F\) là hình chiếu của \(A\) lên \(SD\), chứng minh \(AF \bot \left( {SCD} \right)\) bằng cách sử dụng định lý: “Đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó”.
- Tính \(AF\) bằng cách sử dụng hệ thức giữa cạnh và đường cao trong tam giác vuông \(SAD\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












