Một công ty phải gánh chịu nợ với tốc độ D(t) đô la mỗi năm, với \(D'\left( t \right) =
Một công ty phải gánh chịu nợ với tốc độ D(t) đô la mỗi năm, với \(D'\left( t \right) = 90\left( {t + 6} \right)\sqrt {{t^2} + 12t} \), trong đó t là số lượng thời gian (tính theo năm) kể từ khi công ty bắt đầu vay nợ. Đến năm thứ tư công ty phải chịu 1 610 640 đô la tiền nợ nần. Tìm hàm số biểu diễn tốc độ nợ nần của công ty này?
Đáp án đúng là: C
Quảng cáo
Thực chất đây là một bài toán tìm nguyên hàm \(D\left( t \right) = \int {D'\left( t \right)dt} \)
Nhiều học sinh khi tìm ra được nguyên hàm của hàm số sẽ cộng thêm C luôn như bài toán tìm nguyên hàm bình thường. Tuy nhiên ở đây khoản nợ nần ban đầu đã cố định, tức là hằng số C cố định. Ta cần tìm hằng số để cộng thêm vào công thức.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












