Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(I=\int{{{x}^{3}}\sqrt{{{x}^{2}}+5}dx}\), đặt \(u=\sqrt{{{x}^{2}}+5}\) khi đó viết \(I\) theo \(u\) và

Câu hỏi số 225620:
Nhận biết

Cho \(I=\int{{{x}^{3}}\sqrt{{{x}^{2}}+5}dx}\), đặt \(u=\sqrt{{{x}^{2}}+5}\) khi đó viết \(I\) theo \(u\) và \(du\) ta được:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:225620
Phương pháp giải

- Tính \({{u}^{2}}={{x}^{2}}+5\Rightarrow du=dx\) và thay vào \(I\).

Giải chi tiết

Ta có: \(\sqrt{{{x}^{2}}+5}=u\Rightarrow {{u}^{2}}={{x}^{2}}+5\Rightarrow 2udu=2xdx\Rightarrow {{x}^{3}}dx={{x}^{2}}.xdx=\left( {{u}^{2}}-5 \right).udu\). Khi đó:

\(I=\int{\left( {{u}^{2}}-5 \right).u.udu}=\int{\left( {{u}^{4}}-5{{u}^{2}} \right)du}\)

Chú ý khi giải

HS cần chú ý tính \(x\) theo \(u\); tính vi phân \(dx\) theo \(du\) để thay vào tính \(I\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com