Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Rút gọn tổng sau: \(S = C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n\) ta được:

Câu hỏi số 226128:
Vận dụng cao

Rút gọn tổng sau: \(S = C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n\) ta được:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:226128
Phương pháp giải

+) Số hạng tổng quát của tổng có dạng \(kC_n^k\), vì vậy ta có thể áp dụng ngay tính chất \(kC_n^k = nC_{n - 1}^{k - 1}\)

+) Xuất phát từ khai triển nhị thức \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

+) Thay \(a,b,n\) bằng các giá trị thích hợp.

Giải chi tiết

Ta có: \(kC_n^k = k.\dfrac{{n!}}{{k!\left( {n - k} \right)!}} = \dfrac{{n.\left( {n - 1} \right)!}}{{\left( {k - 1} \right)!\left[ {n - 1 - \left( {k - 1} \right)} \right]!}} = n.C_{n - 1}^{k - 1}\,\,\,\left( * \right)\)

Áp dụng tính chất (*) ta có: \(kC_n^k = nC_{n - 1}^{k - 1}\) với \(1 \le k \le n\)

Khi đó: \(S = nC_{n - 1}^0 + nC_{n - 1}^1 + ... + nC_{n - 1}^{n - 1} = n\left( {C_{n - 1}^0 + C_{n - 1}^1 + C_{n - 1}^2 + ... + C_{n - 1}^{n - 1}} \right)\)

Ta có: \({\left( {a + b} \right)^{n - 1}} = C_{n - 1}^0{a^{n - 1}} + C_{n - 1}^1{a^{n - 2}}b + C_{n - 1}^2{a^{n - 3}}{b^2} + ... + C_{n - 1}^{n - 2}a{b^{n - 2}} + C_{n - 1}^{n - 1}{b^{n - 1}}\)

Thay \(a = 1,b = 1\) ta có: \(C_{n - 1}^0 + C_{n - 1}^1 + C_{n - 1}^2 + ... + C_{n - 1}^{n - 1} = {(1 + 1)^{n - 1}} = {2^{n - 1}}\)

Vậy \(S = n\left( {C_{n - 1}^0 + C_{n - 1}^1 + C_{n - 1}^2 + ... + C_{n - 1}^{n - 1}} \right) = n{.2^{n - 1}}\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com