`

Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho dãy số \(({{u}_{n}})\)với \({{u}_{n}}=\left( 1-\frac{1}{{{2}^{2}}} \right).\left( 1-\frac{1}{{{3}^{2}}} \right)...\left( 1-\frac{1}{{{n}^{2}}} \right)\). Khi đó \(\lim {{u}_{n}}\)bằng?

 

Câu 226149: Cho dãy số \(({{u}_{n}})\)với \({{u}_{n}}=\left( 1-\frac{1}{{{2}^{2}}} \right).\left( 1-\frac{1}{{{3}^{2}}} \right)...\left( 1-\frac{1}{{{n}^{2}}} \right)\). Khi đó \(\lim {{u}_{n}}\)bằng?


 

A. \(\frac{4}{3}.\)                                   

B. \(\frac{1}{2}.\)                                              

C. \(1.\)                                                

D. \(2.\)

Câu hỏi : 226149

Phương pháp giải:

- Rút gọn biểu thức, rồi tính giới hạn.

  • Đáp án : B
    (16) bình luận (0) lời giải

    Giải chi tiết:

    \(\matrix{
    \matrix{
    {u_n} = \left( {1 - {1 \over {{2^2}}}} \right).\left( {1 - {1 \over {{3^2}}}} \right)...\left( {1 - {1 \over {{n^2}}}} \right) \hfill \cr
    = \left( {{{{2^2} - 1} \over {{2^2}}}} \right).\left( {{{{3^2} - 1} \over {{3^2}}}} \right)...\left( {{{{n^2} - 1} \over {{n^2}}}} \right) \hfill \cr
    = {{\left( {{2^2} - 1} \right)\left( {{3^2} - 1} \right)...\left( {{n^2} - 1} \right)} \over {{2^2}{{.3}^2}...{n^2}}} \hfill \cr} \hfill \cr
    { = {{\left( {1.3} \right).\left( {2.4} \right).\left( {3.5} \right).\left( {4.6} \right){\mkern 1mu} ...{\mkern 1mu} {\mkern 1mu} \left[ {\left( {n - 1} \right).\left( {n + 1} \right)} \right]} \over {{2^2}{{.3}^2}...{n^2}}} = {{n + 1} \over {2n}}} \hfill \cr
    { \Rightarrow \lim {u_n} = \lim {{n + 1} \over {2n}} = \lim {{1 + {1 \over n}} \over 2} = {1 \over 2}.} \hfill \cr} \)

    Chọn B.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com