Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính \(\mathop {\lim }\limits_{x \to  - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}}

Câu hỏi số 227543:
Vận dụng

Tính \(\mathop {\lim }\limits_{x \to  - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} \)bằng?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:227543
Phương pháp giải

- Đưa \(x\) vào trong căn: \(x =  - \sqrt {{x^2}} \,\,\,\,khi\,\,x \to  - \infty \)

- Chia cả tử và mẫu cho lũy thừa của \(x\) bậc cao nhất.

- Thay giới hạn .

Giải chi tiết

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}}  = \mathop {\lim }\limits_{x \to  - \infty } \left( { - \sqrt {\frac{{{x^2}\left( {3x + 2} \right)}}{{2{x^3} + {x^2} - 1}}} } \right) = \mathop {\lim }\limits_{x \to  - \infty } \left( { - \sqrt {\frac{{3{x^3} + 2{x^2}}}{{2{x^3} + {x^2} - 1}}} } \right)\\= \mathop {\lim }\limits_{x \to  - \infty } \left( { - \sqrt {\frac{{3 + \frac{2}{x}}}{{2 + \frac{1}{x} - \frac{1}{{{x^3}}}}}} } \right) =  - \sqrt {\frac{3}{2}}\end{array}\)

 

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com