Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, \(O\) là trung điểm của đường cao

Câu hỏi số 228655:
Thông hiểu

Cho Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, \(O\) là trung điểm của đường cao \(AH\) của tam giác \(ABC,\text{ }SO\) vuông góc với đáy. Gọi \(I\) là điểm tùy ý trên \(OH\) (không trùng với \(O\) và \(H\)). mặt phẳng \(\left( P \right)\) qua \(I\) và vuông góc với \(OH\). Thiết diện của \(\left( P \right)\) và hình chóp \(S.ABC\) là hình gì?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:228655
Phương pháp giải

Sử dụng lý thuyết của đường thẳng vuông góc với mặt phẳng và bài toán tìm giao tuyến của hai mặt phẳng

Giải chi tiết

Mặt phẳng (P) vuông góc với OH nên (P) song song với SO.

Suy ra (P) cắt (SAH) theo giao tuyến là đường thẳng qua I và song song với SO cắt SH tại K.

Từ giả thiết suy ra (P) song song BC, do đó \((P)\) sẽ cắt (ABC), (SBC) lần lượt là các đường thẳng qua I và K song song với BC cắt AB, AC. SB, SC  lần lượt tại M, N, P, Q. Do đó thiết diện là tứ giác MNPQ.

Ta có MN và PQ cùng song song \(BC\Rightarrow I\)  là trung điểm của MN và K là trung điểm của PQ.

Mà IK // SO nên \(IK\bot MN,IK\bot PQ\)

Do đó MNPQ là hình thang cân.

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com