Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

 Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=a,\) \(BC=2a.\) Tam giác \(SAB\)

Câu hỏi số 228659:
Thông hiểu

 Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=a,\) \(BC=2a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Mặt phẳng \(\left( \alpha  \right)\) đi qua \(S\) vuông góc với \(AB.\) Tính diện tích \(S\) của thiết diện tạo bởi \(\left( \alpha  \right)\) với hình chóp đã cho.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:228659
Phương pháp giải

Sử dụng lý thuyết của đường thẳng vuông góc với mặt phẳng và bài toán tìm giao tuyến của hai mặt phẳng đồng thời việc tính toán trong tam giác, tứ giác cụ thể là tính diện tích đa giác

Giải chi tiết

Gọi H là trung điểm \(AB\Rightarrow SH\bot AB.\) Suy ra:

\(\bullet \) \(SH\subset \left( \alpha  \right)\).

\(\bullet \) \(SH\bot \left( ABCD \right)\) (do \(\left( SAB \right)\bot \left( ABCD \right)\) theo giao tuyến \(AB\)).

Kẻ \(HM\bot AB\text{ }\left( M\in CD \right)\Rightarrow HM\subset \left( \alpha  \right).\)

Do đó thiết diện là tam giác SHM vuông tại H.

Ta có \(SH=\frac{a\sqrt{3}}{2}\), \(HM=BC=2a.\) Vậy \({{S}_{\Delta SHM}}=\frac{1}{2}.\frac{a\sqrt{3}}{2}.2a=\frac{{{a}^{2}}\sqrt{3}}{2}.\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com