Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a\), cạnh bên bằng \(b\). Mặt phẳng \(\left(

Câu hỏi số 228664:
Vận dụng

Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a\), cạnh bên bằng \(b\). Mặt phẳng \(\left( \alpha  \right)\) đi qua \(A\) và vuông góc với \(SC\). Tìm hệ thức giữa \(a\) và \(b\) để \(\left( \alpha  \right)\) cắt \(SC\) tại điểm \({{C}_{1}}\) nằm giữa \(S\) và \(C\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:228664
Phương pháp giải

Sử dụng lý thuyết của đường thẳng vuông góc với mặt phẳng và bài toán tìm giao tuyến của hai mặt phẳng đồng thời việc tính toán trong tam giác, tứ giác cụ thể là tính diện tích đa giác

Giải chi tiết

Gọi G là trọng tâm tam giác ABC.

Do S.ABC là hình chóp đều nên \(SG\bot \left( ABC \right)\).

Gọi C’ là trung điểm AB. Suy ra C, C’, G thẳng hàng.

Ta có \(\left\{ \begin{align}  & AB\bot CC' \\ & SG\bot AB \\\end{align} \right.\Rightarrow AB\bot \left( SCC' \right)\Rightarrow AB\bot SC\).   (1)

Trong tam giác SAC, kẻ \(A{{C}_{1}}\bot SC\).   (2)

Từ (1) và (2), suy ra \(SC\bot \left( AB{{C}_{1}} \right)\).

Suy ra thiết diện cần tìm là tam giác \(AB{{C}_{1}}\) thỏa mãn đi qua A và vuông góc với SC.

Tam giác SAC cân tại S nên để \({{C}_{1}}\) nằm giữa S và C khi và chỉ khi \(\widehat{ASC}<{{90}^{0}}\).

Suy ra \(\cos \widehat{ASC}>0\Leftrightarrow S{{A}^{2}}+S{{C}^{2}}-A{{C}^{2}}>0\Leftrightarrow 2{{b}^{2}}-{{a}^{2}}>0\Rightarrow a<b\sqrt{2}.\)

 

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com