Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình lập phương ABCD.A’B’C’D’. Gọi \(\alpha \) là góc giữa AC’ và mặt phẳng (A’BCD’).

Câu hỏi số 229216:
Vận dụng

Cho hình lập phương ABCD.A’B’C’D’. Gọi \(\alpha \) là góc giữa AC’ và mặt phẳng (A’BCD’). Chọn khẳng định đúng trong các khẳng định sau?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:229216
Phương pháp giải

Áp dụng phương pháp tìm góc giữa đường thẳng và mặt phẳng – hệ thức lượng trong tam giác vuông để giải quyết yêu cầu của bài toán

Giải chi tiết

Gọi \(A'C \cap AC' = I;{\rm{ }}C'D \cap CD' = H\).

Ta có \(\left\{ \begin{array}{l}C'D \bot CD'\\C'D \bot A'D'\,\,\left( {A'D' \bot \left( {CDD'C'} \right)} \right)\end{array} \right. \Rightarrow C'D \bot \left( {A'BCD'} \right)\)

Hay \(C'H \bot \left( {A'BCD'} \right)\)

\( \Rightarrow HI\) là hình chiếu vuông góc của C’I trên (A’BCD’)

Do đó \(\widehat {\left( {AC',\left( {A'BCD'} \right)} \right)} = \widehat {\left( {C'I;\left( {A'BCD'} \right)} \right)} = \widehat {\left( {C'I;HI} \right)} = \widehat {C'IH}.\)

Trong tam giác vuông C’HI vuông tại H, có \(\tan \widehat {C'IH} = \frac{{C'H}}{{IH}} = \frac{{\frac{{AB\sqrt 2 }}{2}}}{{\frac{{AB}}{2}}} = \sqrt 2 .\)

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com