Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\backslash \text{ }\!\!\{\!\!\text{ }2\}\) và có
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\backslash \text{ }\!\!\{\!\!\text{ }2\}\) và có bảng biến thiên sau: Khẳng định nào sau đây là đúng?
Đáp án đúng là: C
Quảng cáo
Định nghĩa điểm cực trị:
Hàm số f(x) liên tục trên (a;b), x0∈ (a;b), nếu tồn tại h > 0 sao cho f(x) < f(x0) (hay f(x) > f(x0)) với mọi x ∈ (x0 – h;x0 + h) \ {x0} thì x0 là điểm cực đại (hay điểm cực tiểu) của hàm số f(x). Khi đó f(x0) là giá trị cực đại (hay giá trị cực tiểu) của hàm số.
Định nghĩa GTLN (GTNN) của hàm số: Hàm số f(x) có tập xác định là D, nếu tồn tại x0∈ D sao cho f(x) ≤ f(x0) (hay f(x) ≥ f(x0)) ∀x ∈ D thì f(x0) là GTLN (hay GTNN) của hàm số.
Tại điểm cực trị của hàm số, đạo hàm có thể bằng 0, hoặc không xác định. Có thể hiểu: Cực trị là xét trên một lân cận của x0 (một khoảng (x0 – h;x0 + h)), còn GTLN, GTNN là xét trên toàn bộ tập xác định.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












