Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,\,AB=a.\) Tam giác \(SAB\) đều và

Câu hỏi số 230572:
Vận dụng cao

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,\,AB=a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng \(BC\) tạo với mặt phẳng \(\left( SAC \right)\) góc \({{30}^{0}}.\) Tính diện tích tam giác \(ABC.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:230572
Phương pháp giải

Sử dụng các định lí về hai mặt phẳng vuông góc

Giải chi tiết

Gọi \(I\) là trung điểm của \(AB,\) tam giác \(SAB\) đều \( \Rightarrow \,\,\left\{ \begin{array}{l}SI = \frac{{a\sqrt 3 }}{2}\\SI \bot AB\end{array} \right.\)

Mà \(\left( {SAB} \right) \bot \left( {ABC} \right)\)\(\Rightarrow \) \(SI \bot \left( {ABC} \right)\); \(\left\{ \begin{array}{l}SI \bot AC\\AB \bot AC\end{array} \right. \Rightarrow AC \bot \left( {SAB} \right).\)

Kẻ \(BK\) vuông góc với \(SA\) tại \(K,\) ta có \(BK=\frac{a\sqrt{3}}{2},\,\,\,BK\bot \left( SAC \right).\)

Do đó, góc giữa \(BC\) và \(mp\,\,\left( SAC \right)\) là \(\widehat{BCK}\,\,\Rightarrow \,\,\widehat{BCK}={{30}^{0}}.\)

Khi đó \(BC=\frac{BK}{\sin \widehat{BCK}}=a\sqrt{3}\Rightarrow AC=\sqrt{B{{C}^{2}}-A{{B}^{2}}}=a\sqrt{2}.\)

Vậy diện tích tam giác \(ABC\) là \({{S}_{\Delta \,ABC}}=\frac{1}{2}.AB.AC=\frac{{{a}^{2}}\sqrt{2}}{2}.\)

Chọn A

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com