Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy \(\widehat{BAC}={{90}^{0}},\,\,\,BC=2a,\,\,\,\widehat{ACB}={{30}^{0}}.\) Mặt

Câu hỏi số 230573:
Vận dụng cao

Cho hình chóp \(S.ABC\) có đáy \(\widehat{BAC}={{90}^{0}},\,\,\,BC=2a,\,\,\,\widehat{ACB}={{30}^{0}}.\) Mặt phẳng \(\left( SAB \right)\) vuông góc với mặt phẳng \(\left( ABC \right).\) Biết rằng tam giác \(SAB\) cân tại \(S\) và tam giác \(SBC\) vuông tại \(S.\) Tính diện tích tam giác \(SAB.\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:230573
Phương pháp giải

Sử dụng các định lí về hai mặt phẳng vuông góc

Giải chi tiết

 Gọi \(H\) là trung điểm của \(AB,\) tam giác \(SAB\) cân tại \(S\Rightarrow SH\bot AB.\)

Mà \(\left( SAB \right)\bot \left( ABC \right)\) nên \(SH\bot \left( ABC \right)\) và đặt \(SH=x.\)

Tam giác \(ABC\) vuông tại  có \(\left\{ \begin{array}{l}AB = BC.\sin C = a\\AC = BC.\cos C = a\sqrt 3 \end{array} \right..\)

Ta có \(SB=\sqrt{S{{H}^{2}}+H{{B}^{2}}}=\sqrt{{{x}^{2}}+\frac{{{a}^{2}}}{4}},\) \(HC=\sqrt{H{{A}^{2}}+A{{C}^{2}}}=\frac{a\sqrt{13}}{2}\)

Và \(SC=\sqrt{S{{H}^{2}}+H{{C}^{2}}}=\sqrt{{{x}^{2}}+\frac{13{{a}^{2}}}{4}}\)

Tam giác SBC vuông tại S nên \(S{{B}^{2}}+S{{C}^{2}}=B{{C}^{2}}\)

\(\Leftrightarrow {{x}^{2}}+\frac{{{a}^{2}}}{4}+{{x}^{2}}+\frac{13\,{{a}^{2}}}{4}=4{{a}^{2}}\Leftrightarrow {{x}^{2}}=\frac{{{a}^{2}}}{4}\)\(\Leftrightarrow x=\frac{a}{2}\Rightarrow SH=\frac{a}{2}.\)

Vậy diện tích tam giác \(SAB\) là \({{S}_{\Delta \,SAB}}=\frac{1}{2}.SH.AB=\frac{{{a}^{2}}}{4}.\)

Chọn C

 

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com