Trong mặt phẳng \(\left( P \right)\) cho nửa đường tròn đường kính \(AB=2R\) và điểm \(C\) thuộc
Trong mặt phẳng \(\left( P \right)\) cho nửa đường tròn đường kính \(AB=2R\) và điểm \(C\) thuộc nửa đường tròn đó sao cho \(AC=R\). Trên đường thẳng vuông góc với \(\left( P \right)\) tại \(A\) lấy điểm \(S\) sao cho góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SBC \right)\) bằng \({{60}^{0}}\). Gọi \(H,\,\,K\) lần lượt là hình chiếu của \(A\) lên \(SB,\,\,SC\). Độ dài cạnh \(SA\) tính theo \(R\) là
Đáp án đúng là: A
Quảng cáo
Sử dụng phương pháp xác định góc giữa hai mặt phẳng và áp dụng các hệ thức lượng trong tam giác vuông
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













