Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình: \({{x}^{2}}-(2m+1)x+{{m}^{2}}+2=0\). Tìm m để phương trình có 2 nghiệm

Câu hỏi số 230734:
Thông hiểu

Cho phương trình: \({{x}^{2}}-(2m+1)x+{{m}^{2}}+2=0\). Tìm m để phương trình có 2 nghiệm \({{x}_{1}}\,\,;\,\,{{x}_{2}}\) thỏa mãn hệ thức: \(|{{x}_{1}}-{{x}_{2}}|-3=0\) 

Đáp án đúng là: A

Quảng cáo

Câu hỏi:230734
Phương pháp giải

Tính biệt thức \(\Delta \). Áp dụng điều kiện có nghiệm của phương trình bậc hai. Biến đổi biểu thức ban đầu, áp dụng định lí Vi-ét. Từ đó tìm giá trị của tham số m.

Giải chi tiết

Ta có:

\(\Delta ={{(2m+1)}^{2}}-4({{m}^{2}}+2)=4{{m}^{2}}+4m+1-4{{m}^{2}}-8=4m-7\)

Phương trình đã cho có 2 nghiệm \({{x}_{1}}\,\,;\,\,{{x}_{2}}\) khi \(\Delta \ge 0\Leftrightarrow 4m-7\ge 0\Leftrightarrow m\ge \frac{7}{4}\)

Áp dụng định lí Vi-ét, ta có:

\({{x}_{1}}+{{x}_{2}}=2m+1\,\,;\,\,{{x}_{1}}{{x}_{2}}={{m}^{2}}+2.\)

Ta có: \(|{{x}_{1}}-{{x}_{2}}|\,-3=0.\)

\(\begin{align} & \Leftrightarrow |{{x}_{1}}-{{x}_{2}}|=3 \\ & \Leftrightarrow {{({{x}_{1}}-{{x}_{2}})}^{2}}=9 \\ & \Leftrightarrow {{({{x}_{1}}+{{x}_{2}})}^{2}}-4{{x}_{1}}{{x}_{2}}=9 \\ & \Leftrightarrow {{(2m+1)}^{2}}-4({{m}^{2}}+2)=9 \\ & \Leftrightarrow 4{{m}^{2}}+4m+1-4{{m}^{2}}-8=9 \\ & \Leftrightarrow 4m-7=9 \\ & \Leftrightarrow 4m=16 \\ & \Leftrightarrow m=4\,\,\,\,(t/m) \\ \end{align}\)

Chọn A.

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com