Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm a, b để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} + 1}}{{x + 1}}\,\,khi\,\,x \ge

Câu hỏi số 232087:
Vận dụng

Tìm a, b để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} + 1}}{{x + 1}}\,\,khi\,\,x \ge 0\\ax + b\,\,khi\,\,x < 0\end{array} \right.\)  có đạo hàm tại điểm x = 0.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:232087
Phương pháp giải

+) Trước hết hàm số liên tục tại x = 0.

+) Đạo hàm của hàm số \(y=f\left( x \right)\) tại điểm \(x={{x}_{0}}\) là

\(f'\left( {{x}_{0}} \right)=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}\Leftrightarrow f'\left( {{x}_{0}} \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 0 \right)}{x}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 0 \right)}{x}\)

Giải chi tiết

Trước tiên hàm số phải liên tục tại x = 0.

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2} + 1}}{{x + 1}} = 1\\\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {ax + b} \right) = b = f\left( 0 \right)\end{array}\)

Để hàm số liên tục tại x = 0 thì \(\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 0 \right)\Leftrightarrow b=1\)

Khi đó ta có \(f'\left( 0 \right)=\underset{x\to 0}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 0 \right)}{x}\)

Ta có

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\frac{{{x^2} + 1}}{{x + 1}} - 1}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2} - x}}{{x\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{x - 1}}{{x + 1}} =  - 1\\\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\left( {ax + 1} \right) - 1}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} a = a\end{array}\)

Để hàm số có đạo hàm tại x = 0 thì  \(\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 0 \right)}{x}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 0 \right)}{x}\Leftrightarrow a=-1\)

Vậy \(a=-1,b=1\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com