Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tập hợp \(A=\left\{ 1;2;3;...;10 \right\}\). Chọn ngẫu nhiên ba số từ A. Tính xác suất để trong

Câu hỏi số 233090:
Vận dụng cao

Cho tập hợp \(A=\left\{ 1;2;3;...;10 \right\}\). Chọn ngẫu nhiên ba số từ A. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp. 

Đáp án đúng là: D

Quảng cáo

Câu hỏi:233090
Phương pháp giải

+) Gọi A là biến cố : « trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp ».

Khi đó ta có biến cố \(\overline{A}:\) « trong ba số chọn ra có hai hoặc ba số là số nguyên liên tiếp ».

+) Chia các trường hợp:

TH1 : a, b, c là 3 số tự nhiên liên tiếp .

TH2 : Trong ba số chọn ra có hai số nguyên liên tiếp.

+) Áp dụng quy tắc cộng \(\Rightarrow \left| \overline{A} \right|\Rightarrow \left| A \right|=\left| \Omega \right|-\left| \overline{A} \right|\) và tính \(P\left( A \right)=\frac{\left| A \right|}{\left| \Omega \right|}\)

Giải chi tiết

 Chọn ra ba số bất kì từ A có \(C_{10}^{3}=120\) (cách) \(\Rightarrow \left| \Omega \right|=120\).

Gọi A là biến cố : « trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp ».

Khi đó ta có biến cố \(\overline{A}:\) « trong ba số chọn ra có hai hoặc ba số là số nguyên liên tiếp ».

Giả sử chọn được một tập ba số \(\left\{ a;b;c \right\}\) từ tập A.

Không mất tính tổng quát ta giả sử \(a<b<c\).

TH1 : a, b, c là 3 số tự nhiên liên tiếp ta có :

\(\left( a;b;c \right)\in \left\{ \left( 1;2;3 \right);\left( 2;3;4 \right);...;\left( 8;9;10 \right) \right\}\) : có 8 cách chọn.

TH2 : Trong ba số chọn ra có hai số nguyên liên tiếp.

Ta lại chi ra thành các trường hợp nhỏ như sau :

TH2.1 : a, b là số nguyên liên tiếp.

\(a=1,b=2\Rightarrow c\in \left[ 4;10 \right]\Rightarrow \) có 7 cách chọn c.

\(a=2,b=3\Rightarrow c\in \left[ 4;10 \right]\Rightarrow \) có 6 cách chọn c. …

\(a=7;b=8\Rightarrow c\in \left\{ 10 \right\}\Rightarrow \) có 1 cách chọn c.

Vậy có 7 + 6 + 5 + … + 1 = 28 cách.

TH2.2 : b, c là số nguyên liên tiếp.

\(c=10,b=9\Rightarrow a\in \left[ 1;7 \right]\Rightarrow \) có 7 cách chọn a.

\(c=9,b=8\Rightarrow a\in \left[ 1;6 \right]\Rightarrow \) có 6 cách chọn a. …

\(c=4;b=3\Rightarrow a\in \left\{ 1 \right\}\Rightarrow \) có 1 cách chọn a.

Vậy có 7 + 6 + 5 + … + 1 = 28 cách. \(\Rightarrow \left| \overline{A} \right|=8+28+28=64\Rightarrow \left| A \right|=120-64=56\)

Vậy xác suất của biến cố A là \(P\left( A \right)=\frac{\left| A \right|}{\left| \Omega \right|}=\frac{56}{120}=\frac{7}{15}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com