Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình tiếp tuyến của đồ thị hàm số \(y=\frac{x+2}{2x+3}\) biết tiếp tuyến đó cắt

Câu hỏi số 233115:
Vận dụng

Phương trình tiếp tuyến của đồ thị hàm số \(y=\frac{x+2}{2x+3}\) biết tiếp tuyến đó cắt trục tung và trục hoành tại hai điểm phân biệt A, B sao cho tam giác OAB cân là 

Đáp án đúng là: A

Quảng cáo

Câu hỏi:233115
Phương pháp giải

Tam giác OAB cân tại O nên đường tiếp tuyến cần tìm vuông góc với đường thẳng y = x hoặc đường thẳng \(y=-x\).

Giải chi tiết

 \(y=\frac{x+2}{2x+3}\Rightarrow y'=\frac{-1}{{{\left( 2x+3 \right)}^{2}}}\)

Gọi điểm \(M\left( {{x}_{0}};{{y}_{0}} \right)\,\,\left( {{x}_{0}}\ne -\frac{3}{2} \right)\) thuộc đồ thị hàm số (C).

Phương trình tiếp tuyến tại M có dạng: \(y=\frac{-1}{{{\left( 2{{x}_{0}}+3 \right)}^{2}}}\left( x-{{x}_{0}} \right)+\frac{{{x}_{0}}+2}{2{{x}_{0}}+3}\)

Tiếp tuyến giao với trục hoành và trục tung tại 2 điểm phân biệt A, B và tam giác OAB cân tại O nên tiếp tuyến d vuông góc với một trong 2 đường phân giác \(y=x\) hoặc \(y=-x\) .

+) TH1: d vuông góc với đường phân giác \(y=x\) thì ta được:

\(\frac{{ - 1}}{{{{\left( {2{x_0} + 3} \right)}^2}}}.1 = - 1 \Leftrightarrow {\left( {2{x_0} + 3} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}
2{x_0} + 3 = 1\\
2{x_0} + 3 = - 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
{x_0} = - 1 \Rightarrow {y_0} = 1\\
{x_0} = - 2 \Rightarrow {y_0} = 0
\end{array} \right.\)

Với \({{x}_{0}}=-1;{{y}_{0}}=1\) ta có phương trình tiếp tuyến tại M là: \(y=-x\) (loại)

Với \({{x}_{0}}=-2;{{y}_{0}}=0\) ta có phương trình tiếp tuyến tại M là: \(y=-x-2\)

+) TH2: d vuông góc với đường phân giác \(y=-x\) thì ta được:

\(\frac{-1}{{{\left( 2{{x}_{0}}+3 \right)}^{2}}}.\left( -1 \right)=-1\Leftrightarrow {{\left( 2{{x}_{0}}+3 \right)}^{2}}=-1\left( ktm \right)\)

Vậy phương trình tiếp tuyến cần tìm là \(y=-x-2\)

Chọn đáp án A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com