Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình \(\left| x \right|+2\left| x+1 \right|\le {{x}^{2}}\)

Câu hỏi số 233789:
Vận dụng

Tập nghiệm của bất phương trình \(\left| x \right|+2\left| x+1 \right|\le {{x}^{2}}\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:233789
Phương pháp giải

Phá dấu giá trị tuyệt đối.

\(\begin{array}{l}\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,x \ge 0\,\\ - x\,\,khi\,\,x < 0\end{array} \right.\\\left| {x + 1} \right| = \left\{ \begin{array}{l}x + 1\,\,\,\,\,\,khi\,\,x \ge  - 1\,\\ - x - 1\,\,khi\,\,x <  - 1\end{array} \right.\end{array}\)

Do đó, ta xét 3 trường hợp

TH1: \(\,x\ge 0\) TH2: \(-1\le x<0\) TH3: \(x<-1\)
Giải chi tiết

Ta xét 3 trường hợp

TH1: \(\,x\ge 0\)

Ta có: \(\left| x \right| + 2\left| {x + 1} \right| \le {x^2} \Leftrightarrow x + 2\left( {x + 1} \right) \le {x^2} \Leftrightarrow  - {x^2} + 3x + 2 \le 0 \Leftrightarrow \left[ \begin{array}{l}x \ge \frac{{3 + \sqrt {17} }}{2}\\x \le \frac{{3 - \sqrt {17} }}{2}\end{array} \right.\)

Kết hợp với điều kiện\(\,x\ge 0\)  ta có \(x\ge \frac{3+\sqrt{17}}{2}\)

TH2: \(-1\le x<0\)

Ta có: \(\left| x \right| + 2\left| {x + 1} \right| \le {x^2} \Leftrightarrow  - x + 2\left( {x + 1} \right) \le {x^2} \Leftrightarrow  - {x^2} + x + 2 \le 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le  - 1\end{array} \right.\)

Kết hợp với điều kiện\(-1\le x<0\)  ta có \(x=-1\)

TH3: \(x<-1\)

Ta có: \(\left| x \right| + 2\left| {x + 1} \right| \le {x^2} \Leftrightarrow  - x - 2(x + 1) \le {x^2} \Leftrightarrow  - {x^2} - 3x - 2 \le 0 \Leftrightarrow \left[ \begin{array}{l}x \ge  - 1\\x \le  - 2\end{array} \right.\)

Kết hợp với điều kiện \(x<-1\) ta có \(x\le -2\)

Kết hợp ba trường hợp ta có nghiệm của bất phương trình là \(S=\left( -\infty ;-2 \right]\cup \left\{ -1 \right\}\cup \left[ \frac{3+\sqrt{17}}{2};+\infty  \right)\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com