Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 3;3;1 \right),B\left( 0;2;1 \right)\) và

Câu hỏi số 234431:
Vận dụng cao

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 3;3;1 \right),B\left( 0;2;1 \right)\) và mặt phẳng \(\left( P \right):\,\,x+y+z-7=0\). Đường thẳng d nằm trong (P) sao cho mọi điểm của d cách đều hai điểm A, B có phương trình :

Đáp án đúng là: C

Quảng cáo

Câu hỏi:234431
Phương pháp giải

+) Mọi điểm thuộc d cách đều 2 điểm A, B nên d nằm trong mặt phẳng trung trực \(\left( \alpha  \right)\) của AB.

+) Khi đó \(d=\left( P \right)\cap \left( \alpha  \right)\)

Giải chi tiết

Gọi I là trung điểm của AB ta có: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{3 + 0}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{3 + 2}}{2} = \frac{5}{2}\\{z_I} = \frac{{{z_A} + {z_B}}}{2} = \frac{{1 + 1}}{2} = 1\end{array} \right. \Rightarrow I\left( {\frac{3}{2};\frac{5}{2};1} \right)\)

\(\overrightarrow{AB}=\left( -3;-1;0 \right)\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng trung trực của AB, khi đó \(\left( \alpha  \right)\) có phương trình \(-3\left( x-\frac{3}{2} \right)-1\left( y-\frac{5}{2} \right)=0\Leftrightarrow -3x-y+7=0\)

Vì mọi điểm thuộc d đều cách đều A, B nên \(d\subset \left( \alpha  \right)\Rightarrow d=\left( P \right)\cap \left( \alpha  \right)\Rightarrow \) Tập hợp các điểm thuộc d là nghiệm của hệ phương trình : \(\left\{ \begin{array}{l}x + y + z - 7 = 0\\ - 3x - y + 7 = 0\end{array} \right.\)  

Chọn z = 2t ta có : \(\left\{ \begin{array}{l}x + y = 7 - 2t\\ - 3x - y =  - 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x =  - 2t\\y =  - 3x + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = t\\y = 7 - 3t\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}x = t\\y = 7 - 3t\\z = 2t\end{array} \right.\) là phương trình đường thẳng cần tìm.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com