Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho hàm số \(f\left( x \right)=\left\{ \begin{align} & {{x}^{2}}+mx\ \ khi\ \ x\le 1 \\ &

Câu hỏi số 235245:
Thông hiểu

 Cho hàm số \(f\left( x \right)=\left\{ \begin{align} & {{x}^{2}}+mx\ \ khi\ \ x\le 1 \\ & \frac{\sqrt{x+3}-2}{x-1}\ \ khi\ \ x>1 \\ \end{align} \right..\) Tìm m để hàm số đã cho liên tục tại \(x=1.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:235245
Phương pháp giải

Hàm số \(y=f\left( x \right)\) liên tục tại điểm \(x={{x}_{0}}\Leftrightarrow \underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f\left( x \right)=f\left( {{x}_{0}} \right).\)

Giải chi tiết

Ta có: \(f\left( 1 \right)={{1}^{2}}+m.1=m+1.\)

\(\begin{align}  & \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{\sqrt{x+3}-2}{x-1}=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{x+3-4}{\left( x-1 \right)\left( \sqrt{x+3}+2 \right)}=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{1}{\sqrt{x+3}+2}=\frac{1}{4}. \\  & \underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\left( {{x}^{2}}+mx \right)=1+m. \\ \end{align}\)

\(\Rightarrow \) Hàm số liên tục \(\Leftrightarrow m+1=\frac{1}{4}\Leftrightarrow m=-\frac{3}{4}.\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com