Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng \(2a\). Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm b . Đặt \(\alpha \) là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. Khẳng định nào sau đây đúng?
Đáp án đúng là: B
Quảng cáo
- Trên (O), (O’) lần lượt lấy B’, A’ sao cho AA’ // BB’ // OO’.
- Xác định góc \(\alpha \): góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.
- Tính thể tích khối tứ diện \(OO'AB\) theo thể tích khối lăng trụ \(OAB'.O'A'B\).
- Tìm GTLN của khối lăng trụ suy ra số đo góc \(\widehat{AOB'}={{90}^{0}}\Rightarrow A'B=AB'=a\sqrt{2}\Rightarrow \tan \alpha \)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













