Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính giới hạn \(I=\lim \frac{5n+2017}{2n+2018}.\)

Câu hỏi số 236904:
Nhận biết

Tính giới hạn \(I=\lim \frac{5n+2017}{2n+2018}.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:236904
Phương pháp giải

+) Sử dụng quy tắc tính giới hạn của dãy số.

Giải chi tiết

Ta có:  \(I=\lim \frac{5n+2017}{2n+2018}=\lim \frac{5+\frac{2017}{n}}{2+\frac{2018}{n}}=\frac{5}{2}.\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com