Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y =  - {x^3} + 3x - 2\) có đồ thị \(\left( C \right)\). Tiếp tuyến của đồ thị

Câu hỏi số 240879:
Nhận biết

Cho hàm số \(y =  - {x^3} + 3x - 2\) có đồ thị \(\left( C \right)\). Tiếp tuyến của đồ thị \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục hoành có phương trình:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:240879
Phương pháp giải

Tìm giao điểm của đồ thị \(\left( C \right)\) và trục Ox.

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_o};{y_0}} \right)\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)

Giải chi tiết

Xét phương trình hoành độ giao điểm \( - {x^3} + 3x - 2 = 0 \Leftrightarrow \left[ \matrix{  x =  - 2 \Rightarrow M\left( { - 2;0} \right) \hfill \cr   x = 1 \Rightarrow N\left( {1;0} \right) \hfill \cr}  \right.\)

\(y' =  - 3{x^2} + 3\)

\(y'\left( { - 2} \right) =  - 9 \Rightarrow \) Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\left( { - 2;0} \right)\) là: \(y =  - 9\left( {x + 2} \right) + 0 =  - 9x - 18\)

\(y'\left( 1 \right) = 0 \Rightarrow \)  Phương trình tiếp tuyến của \(\left( C \right)\) tại \(N\left( {1;0} \right)\) là \(y = 0\left( {x - 1} \right) + 0 = 0\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com