Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xét khối tứ ABCD có cạnh AD, BC thỏa mãn \(A{{B}^{2}}+C{{D}^{2}}=18\)và các cạnh còn lại đều

Câu hỏi số 241334:
Vận dụng

Xét khối tứ ABCD có cạnh AD, BC thỏa mãn \(A{{B}^{2}}+C{{D}^{2}}=18\)và các cạnh còn lại đều bằng 5. Biết thể tích của khối tứ diện ABCD đạt giá trị lớn nhất có dạn\({{V}_{\max }}=\frac{x\sqrt{y}}{4};\,\,x,y\in {{N}^{*}};\,\,(x;y)=1\). Khi đó, \(x,\,y\) thỏa mãn bất đằng thức nào dưới đây?

 

 

Đáp án đúng là: A

Quảng cáo

Câu hỏi:241334
Phương pháp giải

Sử dụng bất đẳng thức Cô si:  \(2ab\le {{a}^{2}}+{{b}^{2}},\,\,\left( a,b>0 \right)\)

Giải chi tiết

Gọi I, J lần lượt là trung điểm CD, AB; độ dài các đoạn: \(AB=a,\,\,CD=b,\,\,a,b>0,\,\,{{a}^{2}}+{{b}^{2}}=18\)

Tam giác ACD và tam giác BCD cân tại A, B

\(\Rightarrow AI\bot CD,\,\,BI\bot CD\Rightarrow CD\bot (ABI)\)

\(\Rightarrow {{V}_{ABCD}}={{V}_{D.ABI}}+{{V}_{C.ABI}}=\frac{1}{3}.DI.{{S}_{ABI}}+\frac{1}{3}.IC.{{S}_{ABI}}=\frac{1}{3}.CD.{{S}_{ABI}}\)  (*)

Tam giác AID vuông tại I  \(\Rightarrow AI=\sqrt{A{{D}^{2}}-I{{D}^{2}}}=\sqrt{{{5}^{2}}-{{\left( \frac{b}{2} \right)}^{2}}}=\sqrt{25-\frac{{{b}^{2}}}{4}}\)

Dễ dàng chứng minh \(\Delta ACD=\Delta BCD\,\,(c.c.c)\Rightarrow IA=IB\)  (Chiều cao tương ứng bằng nhau)

\(\Rightarrow \Delta IAB\)cân tại I \(\Rightarrow IJ\bot AB\)

Tam giác AIJ vuông tại J \(\Rightarrow IJ=\sqrt{A{{I}^{2}}-A\,{{J}^{2}}}=\sqrt{25-\frac{{{b}^{2}}}{4}-\frac{{{a}^{2}}}{4}}=\sqrt{25-\frac{{{b}^{2}}+{{a}^{2}}}{4}}=\sqrt{25-\frac{18}{4}}=\frac{\sqrt{82}}{2}\)

Diện tích tam giác IAB:  \({{S}_{IAB}}=\frac{1}{2}.AB.IJ=\frac{1}{2}.a.\frac{\sqrt{82}}{2}=\frac{a\sqrt{82}}{4}\). Thay vào (*):

\(\begin{align}  {{V}_{ABCD}}=\frac{1}{3}.b.\frac{a\sqrt{82}}{4}=\frac{ab\sqrt{82}}{12}\overset{Co\,si}{\mathop{\le }}\,\frac{\sqrt{82}}{12}.\frac{{{a}^{2}}+{{b}^{2}}}{2}=\frac{\sqrt{82}}{12}.\frac{18}{2}=\frac{3\sqrt{82}}{4}=\frac{x\sqrt[{}]{y}}{4};\,\,x,y\in {{N}^{*}};\,\,(x;y)=1 \\  \Rightarrow x=3,\,\,y=82 \\ \end{align}\)

Kiểm tra các biểu thức của từng phương án, ta thấy phương án A là đúng.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com