Trong mặt phẳng \(Oxy\) cho đường thẳng d có phương trình \(x-y+1=0\) và hai điểm\(A\left( 3;1
Trong mặt phẳng \(Oxy\) cho đường thẳng d có phương trình \(x-y+1=0\) và hai điểm\(A\left( 3;1 \right);B\left( 7;5 \right)\). Tìm điểm M thuộc d sao cho \(MA+MB\) nhỏ nhất ?
Đáp án đúng là: C
Quảng cáo
Gọi A’ là điểm đối xứng với A qua d, ta có : \(MA=MA’\)
Áp dụng BĐT tam giác ta có \(\Rightarrow MA+MB=MA'+MB\ge A'B\Rightarrow {{\left( MA+MB \right)}_{\min }}\Leftrightarrow M,A',B\) thẳng hàng.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












