Cho hypebol \((H):{{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1\,\,(b > a > 0)\). Cho \(k\) là một
Cho hypebol \((H):{{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1\,\,(b > a > 0)\). Cho \(k\) là một số thực dương. Xét các đường thẳng \(({d_1}):\,\,y = kx,({d_2}):\,\,y = - {1 \over k}x\) đều cắt (H) tại 2 điểm phân biệt. Gọi A và C lần lượt là giao điểm của \(({d_1})\) với (H) (A nằm trong góc phần tư thứ nhất). Gọi B và D lần lượt là giao điểm của \(({d_2})\) với (H) (B nằm trong góc phần tư thứ hai). Tìm k sao cho hình thoi ABCD có diện tích nhỏ nhất.
Đáp án đúng là: A
Quảng cáo
*) Chứng minh \({1 \over {O{A^2}}} + {1 \over {O{B^2}}} = {1 \over {{a^2}}} - {1 \over {{b^2}}}\) không đổi.
*) Áp dụng kết quả này ta được: \({1 \over {{a^2}}} - {1 \over {{b^2}}} = {1 \over {O{A^2}}} + {1 \over {O{B^2}}} \ge {2 \over {OA.OB}} = {1 \over {{S_{OAB}}}} \Rightarrow {S_{OAB}} \ge {{{a^2}{b^2}} \over {{a^2} + {b^2}}}\)
Đáp án cần chọn là: A
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













