Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}=9\) và điểm \(M(1;-1;1)\). Mặt phẳng (P) đi qua M và cắt (S) theo giao tuyến là đường tròn có chu vi nhỏ nhất có phương trình là:
Đáp án đúng là: C
Quảng cáo
Kiểm tra M nằm trong hay ngoài mặt cầu.
Để giao tuyến là đường tròn có chu vi nhỏ nhất thì bán kính của đường tròn đó là nhỏ nhất \(\Leftrightarrow d(O;(P))=OI\)là lớn nhất \(\Leftrightarrow M\equiv I\)
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












