Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y={{x}^{3}}+3{{x}^{2}}+9x+3\) có đồ thị \((C)\). Tìm giá trị thực của tham số k để

Câu hỏi số 252119:
Vận dụng

Cho hàm số \(y={{x}^{3}}+3{{x}^{2}}+9x+3\) có đồ thị \((C)\). Tìm giá trị thực của tham số k để tồn tại hai tiếp tuyến phân biệt với đồ thị \((C)\) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó với \((C)\) cắt trục Ox, Oy lần lượt tại AB sao cho OB = 2018OA.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:252119
Giải chi tiết

TXĐ: \(D=R\)

\(y={{x}^{3}}+3{{x}^{2}}+9x+3\Rightarrow y'=3{{x}^{2}}+6x+9\)

Gọi \(M\left( {{x}_{1}};{{y}_{1}} \right),\,\,N\left( {{x}_{2}};{{y}_{2}} \right)\), (\({{x}_{1}}\ne {{x}_{2}}\)) là 2 tiếp điểm.

\(M,N\in \left( C \right)\Rightarrow {{y}_{1}}={{x}_{1}}^{3}+3{{x}_{1}}^{2}+9{{x}_{1}}+3,\,\,\,{{y}_{2}}={{x}_{2}}^{3}+3{{x}_{2}}^{2}+9{{x}_{2}}+3\)

Tiếp tuyến tại M, N của (C) có hệ số góc đều bằng k \(\Leftrightarrow 3{{x}_{1}}^{2}+6{{x}_{1}}+9=3{{x}_{2}}^{2}+6{{x}_{2}}+9=k\)

\(\Rightarrow {{x}_{1}}^{2}+2{{x}_{1}}-{{x}_{2}}^{2}-2{{x}_{2}}=0\Leftrightarrow \left( {{x}_{1}}-{{x}_{2}} \right)\left( {{x}_{1}}+{{x}_{2}}+2 \right)=0\Leftrightarrow {{x}_{1}}+{{x}_{2}}+2=0\Leftrightarrow {{x}_{2}}=-{{x}_{1}}-2\)

 Theo đề bài, ta có: OB = 2018OA \(\Rightarrow \) Phương trình đường thẳng MN có hệ số góc bằng 2018 hoặc – 2018.

TH1: Phương trình đường thẳng MN có hệ số góc là 2018 \(\Rightarrow \frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=2018\Leftrightarrow {{y}_{2}}-{{y}_{1}}=2018({{x}_{2}}-{{x}_{1}})\)

\(\begin{align}  \Leftrightarrow \left( {{x}_{2}}^{3}+3{{x}_{2}}^{2}+9{{x}_{2}}+3 \right)-\left( {{x}_{1}}^{3}+3{{x}_{1}}^{2}+9{{x}_{1}}+3 \right)=2018({{x}_{2}}-{{x}_{1}}) \\  \Leftrightarrow ({{x}_{2}}-{{x}_{1}})({{x}_{2}}^{2}+{{x}_{2}}{{x}_{1}}+{{x}_{1}}^{2}+3{{x}_{2}}+3{{x}_{1}}-2009)=0 \\  \Leftrightarrow {{x}_{2}}^{2}+{{x}_{2}}{{x}_{1}}+{{x}_{1}}^{2}+3{{x}_{2}}+3{{x}_{1}}-2009=0,\,\,do\,\,{{x}_{2}}\ne {{x}_{1}} \\  \Leftrightarrow {{({{x}_{2}}+{{x}_{1}})}^{2}}+3({{x}_{2}}+{{x}_{1}})-{{x}_{1}}{{x}_{2}}-2009=0 \\  \Rightarrow {{(-2)}^{2}}+3.(-2)-{{x}_{1}}{{x}_{2}}-2009=0\Leftrightarrow {{x}_{1}}{{x}_{2}}=-2011 \\ \end{align}\)

\(\Rightarrow {{x}_{1}},\,\,{{x}_{2}}\) là nghiệm của phương trình \({{X}^{2}}+2X-2011=0\)

\(\Rightarrow {{x}_{1}}^{2}+2{{x}_{1}}-2011=0\Leftrightarrow 3{{x}_{1}}^{2}+6{{x}_{1}}+9=6042\)

\(\Rightarrow k=3{{x}_{1}}^{2}+6{{x}_{1}}+9=6042\)

TH2:  MN có hệ số góc là 2018. Dễ đang kiểm rằng : Không có giá trị của \({{x}_{1}},\,\,{{x}_{2}}\) thỏa mãn.

Vậy k = 6042.

Chọn: D

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com