Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho n là số nguyên dương thỏa mãn \(A_{n}^{2}-3C_{n}^{n-1}=11n\). Xét khai triển \(P(x)={{(x-2)}^{n}}\).

Câu hỏi số 252557:
Vận dụng

Cho n là số nguyên dương thỏa mãn \(A_{n}^{2}-3C_{n}^{n-1}=11n\). Xét khai triển \(P(x)={{(x-2)}^{n}}\). Hệ số chứa \({{x}^{10}}\) trong khai triển là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:252557
Phương pháp giải

+) Công thức khai triển nhị thức Newton: \({{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{C_{n}^{i}{{x}^{i}}.{{y}^{n-i}}}\).

+) \(A_{n}^{k}=\frac{n!}{(n-k)!},\,\,C_{n}^{k}=\frac{n!}{k!(n-k)!}\).

Giải chi tiết

\(A_{n}^{2}-3C_{n}^{n-1}=11n\Leftrightarrow \frac{n!}{(n-2)!}-3n=11n\Leftrightarrow n(n-1)-14n=0\Leftrightarrow {{n}^{2}}-15n=0\Leftrightarrow \left[ \begin{align}  n=0\,\,\,(Loai) \\  n=15 \\ \end{align} \right.\)

Với \(n=15\): \(P(x)={{(x-2)}^{n}}={{(x-2)}^{15}}=\sum\limits_{i=0}^{15}{C_{n}^{i}{{x}^{i}}{{(-2)}^{15-i}}}\)

Hệ số chứa \({{x}^{10}}\) ứng với = 10 và bằng \(C_{15}^{10}{{(-2)}^{15-10}}=\) -96096.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com